

Course Name: A Level (1st Sem) Topic: FD – Its types (Part 2) Subject : Introduction to DBMS Date: 20-Apr-2020

Functional Dependency – Its types

4 Trivial Functional Dependency

A Functional Dependency $\alpha \rightarrow \beta$ is said to trivial FD if β is subset of α i.e. $\beta \subseteq \alpha$.

The functional dependency like $A \rightarrow A$, $AB \rightarrow B$ are trivial FDs.

Suppose a relation employee (emp_id, emp_name, emp_dob), the following FDs are trivial FDs

● {emp_id, emp_name } → emp_name

[emp_name is subset of {emp_id, emp_name}. It is very obvious that if we know the emp_id and emp_name of the employee then we can find or tell the emp_name of the employee.]

```
• \{emp_id, emp_dob\} \rightarrow emp_id
```

[emp_id is subset of {emp_id, emp_dob}. It is very obvious that if we know the emp_id and emp_dob of the employee then we can find or tell the emp_id of the employee.]

```
• emp_id \rightarrow emp_id
```

- emp_name → emp_name
- emp_dob → emp_dob

4 Non Trivial Functional Dependency

A Functional Dependency $\alpha \rightarrow \beta$ is said to non trivial FD if β is not subset of α i.e. $\beta \not\subseteq \alpha$.

The functional dependency like $A \rightarrow A$, $A \rightarrow AB$ are trivial FDs.

Suppose a relation employee (emp_id, emp_name, emp_dob), the following FDs are non-trivial FDs

• emp_id → emp_name

[emp_name is not subset of emp_id.]

• emp_id → emp_dob

[emp_dob is not subset of emp_id.]

4 Completely Non Trivial Functional Dependency

A Functional Dependency $\alpha \rightarrow \beta$ is said to completely non trivial FD if the intersection of α and

 β is NULL (Φ) i.e. α is not subset of β and β is not subset of α ($\beta \not\subseteq \alpha$ and $\alpha \not\subseteq \beta$).

The functional dependency $AB \rightarrow CD$ is completely non trivial FDs.

Note: $A \rightarrow AB$ is non - trivial FD but it is not completely non trivial because the intersection of A and AB is A.

Exercise:	R (A , B , C , D)			
Which functional dependency holds in given relation and	Α	B	С	D
why?	a ₁	b ₁	c ₁	d ₁
	a ₁	b ₂	c ₁	d ₂
1. $B \rightarrow C$	a ₂	b ₂	c ₂	d ₂
2. A→C	a ₂	b ₃	c ₂	d ₃
3. A → D	a ₃	b ₃	c ₂	d_4
4. C → D				
•••				
• Pr	epared B	v G	n No	