Q. Suppose a relational schema R(w x y z), and set of functional dependency as following

\[F : \{ x \rightarrow w, \]
\[wz \rightarrow xy, \]
\[y \rightarrow wxz \} \]

Find the canonical cover \(F_c \) (Minimal set of functional dependency).

Solution:

Step1: First we will check if there is any extra attribute for each FD at right side:

For this, we will decompose all the FD

\[x \rightarrow w, \]
\[wz \rightarrow x, \]
\[wz \rightarrow y, \]
\[y \rightarrow w, \]
\[y \rightarrow x, \]
\[y \rightarrow z \]

Now compute

\[x^+ = xw \quad \text{(using all FDs)} \]
\[x^+ = x \quad \text{(without using } x \rightarrow w) \]

It implies that \(x \rightarrow w \) is essential because without this FD, \(x^+ \) is different.

Like wise

\[wz^+ = wzxy \quad \text{(using all FDs)} \]
\[wz^+ = wzyx \quad \text{(without using } wz \rightarrow x) \]

It implies that \(wz \rightarrow x \) is not essential because without this FD, \(wz^+ \) is same.
\[wz^+ = wz \quad \text{(without using } wz \rightarrow y) \]

It implies that \(wz \rightarrow y \) is **essential** because without this FD, \(wz^+ \) is different.

\[
\begin{align*}
y^+ &= ywzx \quad \text{(using all FDs)} \\
y^+ &= yxzw \quad \text{(without } y \rightarrow w) \\
y^+ &= yz \quad \text{(without } y \rightarrow x) \\
y^+ &= yxw \quad \text{(without } y \rightarrow z) \\
\end{align*}
\]

It implies that \(y \rightarrow w \) is **not essential** whereas \(y \rightarrow x \) and \(y \rightarrow z \) are **essential**.

Note: Once the non essential FD is identified, then do not include that non essential FD while computing the closure of attributes further. Exclude that FD immediately.

Now FD set (all essential FDs)

\[
\begin{align*}
x & \rightarrow w \\
wz & \rightarrow y \\
y & \rightarrow x \\
y & \rightarrow z \\
\end{align*}
\]

Step 2: Now we will check if there is any extra attribute at left side of FD.

For this

\[
wz \rightarrow y \quad \text{(only this FD has more than one attribute at left side, it may only contain extra attribute at left side)}
\]

\[
\begin{align*}
\text{compute:} & \quad wz^+ = wzyx \\
w^+ &= w \\
z^+ &= z \\
\end{align*}
\]

- If \(wz^+ \) and \(w^+ \) are same, it implies that \(z \) is extra in \(wz \rightarrow y \).
- Likewise if \(wz^+ \) and \(z^+ \) are same, it implies that \(w \) is extra in \(wz \rightarrow y \).

\(wz \rightarrow y \) is **essential** because \(wz^+ \) and \(w^+ \) are different, \(wz^+ \) and \(z^+ \) are different.

Therefore, the minimal set of FD is

\[
\begin{align*}
F_c : & \quad \{ x \rightarrow w, \\
wz & \rightarrow y, \\
y & \rightarrow xz \} \\
\end{align*}
\]

whereas

\[
\begin{align*}
F : & \quad \{ x \rightarrow w, \\
wz & \rightarrow xy, \\
y & \rightarrow wxz \} \\
\end{align*}
\]

\(x \) was extraneous.

\(w \) was extraneous.

Prepared By **Ajay Verma**
Exercise:
Suppose a relational schema R(P, Q, R, S), and set of functional dependency as following

\[F : \{ P \rightarrow QR, \quad Q \rightarrow R, \quad P \rightarrow Q, \quad PQ \rightarrow R \} \]

Find the canonical cover \(F_c \) (Minimal set of functional dependency).