

Liay Yerma

Prepared By

Course Name: A Level (1st Sem) Topic: FD – Exercise practices on canonical cover (Part 10) Subject : Introduction to DBMS Date: 05-May-2020

Canonical Cover - Exercise Practices

Q. Suppose a relational schema $R(w \times y z)$, and set of functional dependency as following

 $F: \{ x \rightarrow w, \\ wz \rightarrow xy, \\ y \rightarrow wxz \}$

Find the canonical cover F_c (Minimal set of functional dependency).

Solution:

Step1: First we will check if there is any extra attribute for each FD at right side:

For this, we will decompose all the FD Decomposition **Important:** is $x \rightarrow w$, always done at right side of FD. Never try to decompose at left side. $wz \rightarrow x$, It makes FDs invalid. wz → y, $\mathbf{y} \rightarrow \mathbf{w}$ $AB \rightarrow CD$ $AB \rightarrow CD$ We can decompose We can't decompose $y \rightarrow x$, $AB \rightarrow C$ A →CD $y \rightarrow z$ AB →D B →CD Now compute $\mathbf{x}^+ = \mathbf{x}\mathbf{w}$ (using all FDs) $\mathbf{x}^+ = \mathbf{x}$ (without using $x \rightarrow w$) It implies that $x \rightarrow w$ is essential because without this FD, x^+ is different. Like wise $wz^+ = wzxy$ (using all FDs) $wz^+ = wzyx$ (without using $wz \rightarrow x$) It implies that $wz \rightarrow x$ is **not essential** because without this FD, wz^+ is same.

wz⁺ = wz (without using wz \rightarrow y) It implies that wz \rightarrow y is **essential** because without this FD, wz⁺ is different.

 $y^+ = ywxz$ (using all FDs) $y^+ = yxzw$ (without $y \rightarrow w$) $y^+ = yz$ (without $y \rightarrow x$) $y^+ = yxw$ (without $y \rightarrow z$)

Note: Once the non essential FD is identified, then do not include that non essential FD while computing the closure of attributes further. Exclude that FD immediately.

It implies that $y \rightarrow w$ is **not essential** whereas $y \rightarrow x$ and $y \rightarrow z$ are **essential**.

Now FD set (all essential FDs)

 $\begin{array}{c} x \longrightarrow w \\ wz \longrightarrow y \\ y \longrightarrow x \\ y \longrightarrow z \end{array}$

Step 2: Now we will check if there is any extra attribute at left side of FD.

For this

wz \rightarrow y (only this FD has more than one attribute at left side, it may only contain extra attribute at left side)

compute $wz^+ = wzyx$ $w^+ = w$ $z^+ = z$ If wz^+ and w^+ are same, it implies that z is extra in $wz \rightarrow y$. Likewise if wz^+ and z^+ are same, it implies that w is extra in $wz \rightarrow y$.

 $wz \rightarrow y$ is essential because wz^+ and w+ are different, wz^+ and z+ are different .

Therefore, the minimal set of FD is whereas

$\mathbf{F}_{\mathbf{c}}$: { $\mathbf{x} \rightarrow \mathbf{w}$,	$F: \{x \rightarrow w,$	
$wz \rightarrow y,$	$w_Z \rightarrow xy,$	x was extraneous.
$\mathbf{y} \rightarrow \mathbf{x}\mathbf{z}$ }	$y \rightarrow wxz$ }	w was extraneous.

Exercise:

Suppose a relational schema R(P, Q, R, S), and set of functional dependency as following

 $F : \{ P \rightarrow QR, Q \rightarrow R, P \rightarrow Q, PQ \rightarrow R \}$

Find the canonical cover F_c (Minimal set of functional dependency).

