
Page 1 of 2

NIELIT GORAKHPUR

Course Name: A Level (2nd Sem) Subject: Data Structure using C++
Topic: Breadth First Search without using Queue Date: 29-04-2020

Breadth First Search without using Queue

Breadth-first search is a graph traversal algorithm which traverse a graph or tree level by level. In this
article, BFS for a Graph is implemented using Adjacency list without using a Queue.

Examples:

Input:
Output: BFS traversal = 2, 0, 3, 1

Explanation:
In the following graph, we start traversal from vertex 2. When we come to vertex 0, we look for all adjacent
vertices of it. 2 is also an adjacent vertex of 0. If we don’t mark visited vertices, then 2 will be processed
again and it will become a non-terminating process. Therefore, a Breadth-First Traversal of the following
graph is 2, 0, 3, 1.

Approach:
This problem can be solved using simple breadth-first traversal from a given source. The implementation
uses adjacency list representation of graphs.

STL Vector container is used to store lists of adjacent nodes and queue of nodes needed for BFS traversal.
A DP array is used to store the distance of the nodes from the source. Every time we move from a node to
another node, the distance increases by 1. If the distance to reach the nodes becomes smaller than the
previous distance, we update the value stored in the DP[node].

Implementation of the above approach:

#include <bits/stdc++.h>
using namespace std;
void BFS(int curr, int N, vector<bool>& vis, vector<int>& dp, vector<int>& v, vector<vector<int> >&
adj)
{
 while (curr <= N)
{
 int node = v[curr - 1];
 cout << node << ", ";
 for (int i = 0; i < adj[node].size(); i++)
 {
 int next = adj[node][i];

 if ((!vis[next])

Page 2 of 2

 && (dp[next] < dp[node] + 1)) {

 // Stores the adjacent node
 v.push_back(next);

 // Increases the distance
 dp[next] = dp[node] + 1;

 // Mark it as visited
 vis[next] = true;
 }
 }
 curr += 1;
 }
}

void bfsTraversal(vector<vector<int> >& adj, int N, int source)
{
 // Initially mark all nodes as false
 vector<bool> vis(N + 1, false);

 // Initialize distance array with 0
 vector<int> dp(N + 1, 0), v;
 v.push_back(source);
 dp = 0;
 vis = true;
 // Call the BFS function
 BFS(1, N, vis, dp, v, adj);
}

// Driver code
int main()
{
 // No. of nodes in graph
 int N = 4;
 // Creating adjacency list
 // for representing graph
 vector<vector<int> > adj(N + 1);
 adj[0].push_back(1);
 adj[0].push_back(2);
 adj[1].push_back(2);
 adj[2].push_back(0);
 adj[2].push_back(3);
 adj[3].push_back(3);

 // Following is BFS Traversal
 // starting from vertex 2
 bfsTraversal(adj, N, 2);
 return 0;
}

Output:
2, 0, 3, 1,

