
Page 1 of 4

NIELIT GORAKHPUR

Course Name: A Level (2nd Sem) Subject: Data Structure using C++
Topic: Binary Tree Date: 27-04-2020

Tree represents the nodes connected by edges. We will discuss binary tree or binary search tree specifically.

Binary Tree is a special datastructure used for data storage purposes. A binary tree has a special condition
that each node can have a maximum of two children. A binary tree has the benefits of both an ordered array
and a linked list as search is as quick as in a sorted array and insertion or deletion operation are as fast as in
linked list.

Following are the important terms with respect to tree.
Path Path refers to the sequence of nodes along the edges of a tree.
Root The node at the top of the tree is called root. There is only one root per tree and one path from
 the root node to any node.
Parent Any node except the root node has one edge upward to a node called parent.
Child The node below a given node connected by its edge downward is called its child node.
Leaf The node which does not have any child node is called the leaf node.
Subtree Subtree represents the descendants of a node.
Visiting Visiting refers to checking the value of a node when control is on the node.
Traversing Traversing means passing through nodes in a specific order.
Levels Level of a node represents the generation of a node. If the root node is at level 0, then its next
 child node is at level 1, its grandchild is at level 2, and so on.
Keys Key represents a value of a node based on which a search operation is to be carried out for a
 node.

Binary Search Tree Representation
Binary Search tree exhibits a special behavior. A node's left child must have a value less than its parent's
value and the node's right child must have a value greater than its parent value.

We're going to implement tree using node object and connecting them through references.

Page 2 of 4

Tree Node
The code to write a tree node would be similar to what is given below. It has a data part and references to its
left and right child nodes.
struct node
{
 int data;
 struct node *leftChild;
 struct node *rightChild;
};

In a tree, all nodes share common construct.

BST Basic Operations
The basic operations that can be performed on a binary search tree data structure, are the following −

Insert Inserts an element in a tree/create a tree.
Search Searches an element in a tree.
Preorder Traversal Traverses a tree in a pre-order manner.
Inorder Traversal Traverses a tree in an in-order manner.
Postorder Traversal Traverses a tree in a post-order manner.

We shall learn creating (inserting into) a tree structure and searching a data item in a tree in this chapter. We
shall learn about tree traversing methods in the coming chapter.

Insert Operation
The very first insertion creates the tree. Afterwards, whenever an element is to be inserted, first locate its
proper location. Start searching from the root node, then if the data is less than the key value, search for the
empty location in the left subtree and insert the data. Otherwise, search for the empty location in the right
subtree and insert the data.

Algorithm
If root is NULL
 then create root node
return
If root exists then
 compare the data with node.data
 while until insertion position is located
 If data is greater than node.data
 goto right subtree
 else
 goto left subtree
 endwhile
 insert data
end If

Implementation
The implementation of insert function should look like this −

void insert(int data)
{
 struct node *tempNode = (struct node*) malloc(sizeof(struct node));
 struct node *current;
 struct node *parent;
 tempNode->data = data;
 tempNode->leftChild = NULL;
 tempNode->rightChild = NULL;

Page 3 of 4

 //if tree is empty, create root node
 if(root == NULL)
 {
 root = tempNode;
 }
 else
 {
 current = root;
 parent = NULL;
 while(1)
 {
 parent = current;
 if(data < parent->data)
 {
 current = current->leftChild;
 //insert to the left
 if(current == NULL)
 {
 parent->leftChild = tempNode;
 return;
 }
 }
 else
 {
 current = current->rightChild;
 if(current == NULL)
 {
 parent->rightChild = tempNode;
 return;
 }
 }
 }
 }
}

Search Operation
Whenever an element is to be searched, start searching from the root node, then if the data is less than the
key value, search for the element in the left subtree. Otherwise, search for the element in the right subtree.
Follow the same algorithm for each node.

Algorithm

If root.data is equal to search.data
 return root
else
 while data not found
 If data is greater than node.data
 goto right subtree
 else
 goto left subtree
 If data found
 return node
 endwhile
 return data not found
end if

Page 4 of 4

The implementation of this algorithm should look like this.

struct node* search(int data)
{
 struct node *current = root;
 printf("Visiting elements: ");
 while(current->data != data)
 {
 if(current != NULL)
 printf("%d ",current->data);
 if(current->data > data)
 {
 current = current->leftChild;
 }
 else
 {
 current = current->rightChild;
 }
 if(current == NULL)
 {
 return NULL;
 }
 return current;
 }
}

