
NIELIT GORAKHPUR

Course Name: A Level (2nd Sem)
Topic: Interpolation Search in C++

Interpolation search is an improved variant of binary search. This search algorithm works on the probing
position of the required value. For this algorithm to work properly, the data collection should be in a sorted
form and equally distributed.

Binary search has a huge advantage of time co
complexity of Ο(n) whereas binary search has

There are cases where the location of target data may be known in advance.
directory, if we want to search the telephone number of Morphius. Here, linear search and even binary
search will seem slow as we can directly jump to memory space where the names start from 'M' are stored.

Positioning in Binary Search
In binary search, if the desired data is not found then the rest of the list is divided in two parts, lower and
higher. The search is carried out in either of them.

Even when the data is sorted, binary search does not take advantage to probe the

Position Probing in Interpolation Search
Interpolation search finds a particular item by computing the probe position. Initially, the probe position is
the position of the middle most item of the collection.

If a match occurs, then the index of the item is returned. To split the list into two parts, we use the following
method −

mid = Lo + ((Hi
where
 A = list
 Lo = Lowest index of the list
 Hi = Highest index of the list
 A[n] = Value stored at index n in the list

NIELIT GORAKHPUR

 Subject: Data Structure using C++
 Date: 24-04-2020

variant of binary search. This search algorithm works on the probing
position of the required value. For this algorithm to work properly, the data collection should be in a sorted

Binary search has a huge advantage of time complexity over linear search. Linear search has worst
(n) whereas binary search has Ο(log n).

There are cases where the location of target data may be known in advance. E.g. in case of a telephone
directory, if we want to search the telephone number of Morphius. Here, linear search and even binary
search will seem slow as we can directly jump to memory space where the names start from 'M' are stored.

In binary search, if the desired data is not found then the rest of the list is divided in two parts, lower and
higher. The search is carried out in either of them.

Even when the data is sorted, binary search does not take advantage to probe the position of the desired data.

Position Probing in Interpolation Search
Interpolation search finds a particular item by computing the probe position. Initially, the probe position is
the position of the middle most item of the collection.

occurs, then the index of the item is returned. To split the list into two parts, we use the following

mid = Lo + ((Hi - Lo) / (A[Hi] - A[Lo])) * (X - A[Lo])

A[n] = Value stored at index n in the list

ture using C++

variant of binary search. This search algorithm works on the probing
position of the required value. For this algorithm to work properly, the data collection should be in a sorted

mplexity over linear search. Linear search has worst-case

in case of a telephone
directory, if we want to search the telephone number of Morphius. Here, linear search and even binary
search will seem slow as we can directly jump to memory space where the names start from 'M' are stored.

In binary search, if the desired data is not found then the rest of the list is divided in two parts, lower and

position of the desired data.

Interpolation search finds a particular item by computing the probe position. Initially, the probe position is

occurs, then the index of the item is returned. To split the list into two parts, we use the following

Page 2 of 3

If the middle item is greater than the item, then the probe position is again calculated in the sub-array to the
right of the middle item. Otherwise, the item is searched in the sub-array to the left of the middle item. This
process continues on the sub-array as well until the size of sub-array reduces to zero.

Runtime complexity of interpolation search algorithm is Ο(log (log n)) as compared to Ο(log n) of BST in
favourable situations.

Algorithm
As it is an improvisation of the existing BST algorithm, we are mentioning the steps to search the 'target'
data value index, using position probing −

Step 1 − Start searching data from middle of the list.
Step 2 − If it is a match, return the index of the item, and exit.
Step 3 − If it is not a match, probe position.
Step 4 − Divide the list using probing formula and find the new middle.
Step 5 − If data is greater than middle, search in higher sub-list.
Step 6 − If data is smaller than middle, search in lower sub-list.
Step 7 − Repeat until match.

Coding

#include<stdio.h>
#define MAX 10

// array of items on which linear search will be conducted.
int list[MAX] = { 10, 14, 19, 26, 27, 31, 33, 35, 42, 44 };

int find(int data)
 {
 int lo = 0;
 int hi = MAX - 1;
 int mid = -1;
 int comparisons = 1;
 int index = -1;

 while(lo <= hi)
 {
 printf("\nComparison %d \n" , comparisons) ;
 printf("lo : %d, list[%d] = %d\n", lo, lo, list[lo]);
 printf("hi : %d, list[%d] = %d\n", hi, hi, list[hi]);

 comparisons++;

 // probe the mid point
 mid = lo + (((double)(hi - lo) / (list[hi] - list[lo])) * (data - list[lo]));
 printf("mid = %d\n",mid);

 // data found
 if(list[mid] == data)
 {
 index = mid;
 break;
 }
 else
 {
 if(list[mid] < data)

Page 3 of 3

 {
 // if data is larger, data is in upper half
 lo = mid + 1;
 }
 else
 {
 // if data is smaller, data is in lower half
 hi = mid - 1;
 }
 }
 }

 printf("\nTotal comparisons made: %d", --comparisons);
 return index;
}

int main()
{
 //find location of 33
 int location = find(33);

 // if element was found
 if(location != -1)
 printf("\nElement found at location: %d" ,(location+1));
 else
 printf("Element not found.");

 return 0;
}

Output

Comparison 1
lo : 0, list[0] = 10
hi : 9, list[9] = 44
mid = 6

Total comparisons made: 1
Element found at location: 7

