

Programming and Problem Solving through Python Language
O Level / A Level

Chapter -3: Introduction to Python Language

Python Strings

 Strings in Python are identified as a contiguous set of characters represented in the
quotation marks.

 Python allows for either pairs of single or double quotes.

 Subsets of strings can be taken using the slice operator ([] and [:]) with indexes starting
at 0 in the beginning of the string and working their way from -1 at the end.

 The plus (+) sign is the string concatenation operator and the asterisk (*) is the repetition
operator.

str = 'Hello NIELIT!'

print str # Prints complete string

print str[0] # Prints first character of the string

print str[2:5] # Prints characters starting from 3rd to 5th

print str[2:] # Prints string starting from 3rd character

print str * 2 # Prints string two times

print str + "GKP" # Prints concatenated string

This will produce the following result −

Hello NIELIT!

H

llo

llo NIELIT!

Hello NIELIT!Hello NIELIT!

Hello NIELIT!GKP

Python Lists

 A list contains items separated by commas and enclosed within square brackets ([]). To
some extent, lists are similar to arrays in C. One difference between them is that all the
items belonging to a list can be of different data type.

 The values stored in a list can be accessed using the slice operator ([] and [:]) with
indexes starting at 0 in the beginning of the list and working their way to end -1.

 The plus (+) sign is the list concatenation operator, and the asterisk (*) is the repetition
operator.

list = ['abcd', 786 , 2.23, 'john', 70.2]

tinylist = [123, 'john']

print list # Prints complete list

print list[0] # Prints first element of the list

print list[1:3] # Prints elements starting from 2nd till 3rd

print list[2:] # Prints elements starting from 3rd element

print tinylist * 2 # Prints list two times

print list + tinylist # Prints concatenated lists

This produce the following result −

['abcd', 786, 2.23, 'john', 70.2]

abcd

[786, 2.23]

[2.23, 'john', 70.2]

[123, 'john', 123, 'john']

['abcd', 786, 2.23, 'john', 70.2, 123, 'john']

Python Tuples

 A tuple is another sequence data type that is similar to the list.

 A tuple consists of a number of values separated by commas. Unlike lists, however,
tuples are enclosed within parentheses.

 The main differences between lists and tuples are:

o Lists are enclosed in brackets ([]) and their elements and size can be changed,

o while tuples are enclosed in parentheses (()) and cannot be updated.

 Tuples can be thought of as read-only lists.

tuple = ('abcd', 786 , 2.23, 'john', 70.2)

tinytuple = (123, 'john')

print tuple # Prints complete list

print tuple[0] # Prints first element of the list

print tuple[1:3] # Prints elements starting from 2nd till 3rd

print tuple[2:] # Prints elements starting from 3rd element

print tinytuple * 2 # Prints list two times

print tuple + tinytuple # Prints concatenated lists

This produce the following result −

('abcd', 786, 2.23, 'john', 70.2)

abcd

(786, 2.23)

(2.23, 'john', 70.2)

(123, 'john', 123, 'john')

('abcd', 786, 2.23, 'john', 70.2, 123, 'john')

Python Dictionary

 Python's dictionaries are kind of hash table type.

 They work like associative arrays or hashes found in Perl and consist of key-value pairs.

 A dictionary key can be almost any Python type, but are usually numbers or strings.
Values, on the other hand, can be any arbitrary Python object.

 Dictionaries are enclosed by curly braces ({ }) and values can be assigned and accessed
using square braces ([]).

dict = {}

dict['one'] = "This is one"

dict[2] = "This is two"

tinydict = {'name': 'john','code':6734, 'dept': 'sales'}

print dict['one'] # Prints value for 'one' key

print dict[2] # Prints value for 2 key

print tinydict # Prints complete dictionary

print tinydict.keys() # Prints all the keys

print tinydict.values() # Prints all the values

This produce the following result −

This is one

This is two

{'dept': 'sales', 'code': 6734, 'name': 'john'}

['dept', 'code', 'name']

['sales', 6734, 'john']

Data Type Conversion

To convert between types, you simply use the type name as a function.

There are several built-in functions to perform conversion from one data type to
another. These functions return a new object representing the converted value.

SNo. Function Description

1
int(x [,base]) Converts x to an integer. base specifies the base if x is a string.

2 long(x [,base]) Converts x to a long integer. base specifies the base if x is a string.

3 float(x) Converts x to a floating-point number.

4 complex(real [,imag]) Creates a complex number.

5 str(x) Converts object x to a string representation.

6 repr(x) Converts object x to an expression string.

7 eval(str) Evaluates a string and returns an object.

8 tuple(s). Converts s to a tuple

9 list(s) Converts s to a list.

10 set(s) Converts s to a set.

11 dict(d) Creates a dictionary. d must be a sequence of (key,value) tuples.

12 frozenset(s) Converts s to a frozen set.

13 chr(x) Converts an integer to a character.

14 unichr(x). Converts an integer to a Unicode character

15 ord(x). Converts a single character to its integer value

16 hex(x) Converts an integer to a hexadecimal string.

17 oct(x) Converts an integer to an octal string.

