

Programming and Problem Solving through Python Language
O Level / A Level

Chapter -3: Introduction to Python Language

Python Strings

 Strings in Python are identified as a contiguous set of characters represented in the
quotation marks.

 Python allows for either pairs of single or double quotes.

 Subsets of strings can be taken using the slice operator ([] and [:]) with indexes starting
at 0 in the beginning of the string and working their way from -1 at the end.

 The plus (+) sign is the string concatenation operator and the asterisk (*) is the repetition
operator.

str = 'Hello NIELIT!'

print str # Prints complete string

print str[0] # Prints first character of the string

print str[2:5] # Prints characters starting from 3rd to 5th

print str[2:] # Prints string starting from 3rd character

print str * 2 # Prints string two times

print str + "GKP" # Prints concatenated string

This will produce the following result −

Hello NIELIT!

H

llo

llo NIELIT!

Hello NIELIT!Hello NIELIT!

Hello NIELIT!GKP

Python Lists

 A list contains items separated by commas and enclosed within square brackets ([]). To
some extent, lists are similar to arrays in C. One difference between them is that all the
items belonging to a list can be of different data type.

 The values stored in a list can be accessed using the slice operator ([] and [:]) with
indexes starting at 0 in the beginning of the list and working their way to end -1.

 The plus (+) sign is the list concatenation operator, and the asterisk (*) is the repetition
operator.

list = ['abcd', 786 , 2.23, 'john', 70.2]

tinylist = [123, 'john']

print list # Prints complete list

print list[0] # Prints first element of the list

print list[1:3] # Prints elements starting from 2nd till 3rd

print list[2:] # Prints elements starting from 3rd element

print tinylist * 2 # Prints list two times

print list + tinylist # Prints concatenated lists

This produce the following result −

['abcd', 786, 2.23, 'john', 70.2]

abcd

[786, 2.23]

[2.23, 'john', 70.2]

[123, 'john', 123, 'john']

['abcd', 786, 2.23, 'john', 70.2, 123, 'john']

Python Tuples

 A tuple is another sequence data type that is similar to the list.

 A tuple consists of a number of values separated by commas. Unlike lists, however,
tuples are enclosed within parentheses.

 The main differences between lists and tuples are:

o Lists are enclosed in brackets ([]) and their elements and size can be changed,

o while tuples are enclosed in parentheses (()) and cannot be updated.

 Tuples can be thought of as read-only lists.

tuple = ('abcd', 786 , 2.23, 'john', 70.2)

tinytuple = (123, 'john')

print tuple # Prints complete list

print tuple[0] # Prints first element of the list

print tuple[1:3] # Prints elements starting from 2nd till 3rd

print tuple[2:] # Prints elements starting from 3rd element

print tinytuple * 2 # Prints list two times

print tuple + tinytuple # Prints concatenated lists

This produce the following result −

('abcd', 786, 2.23, 'john', 70.2)

abcd

(786, 2.23)

(2.23, 'john', 70.2)

(123, 'john', 123, 'john')

('abcd', 786, 2.23, 'john', 70.2, 123, 'john')

Python Dictionary

 Python's dictionaries are kind of hash table type.

 They work like associative arrays or hashes found in Perl and consist of key-value pairs.

 A dictionary key can be almost any Python type, but are usually numbers or strings.
Values, on the other hand, can be any arbitrary Python object.

 Dictionaries are enclosed by curly braces ({ }) and values can be assigned and accessed
using square braces ([]).

dict = {}

dict['one'] = "This is one"

dict[2] = "This is two"

tinydict = {'name': 'john','code':6734, 'dept': 'sales'}

print dict['one'] # Prints value for 'one' key

print dict[2] # Prints value for 2 key

print tinydict # Prints complete dictionary

print tinydict.keys() # Prints all the keys

print tinydict.values() # Prints all the values

This produce the following result −

This is one

This is two

{'dept': 'sales', 'code': 6734, 'name': 'john'}

['dept', 'code', 'name']

['sales', 6734, 'john']

Data Type Conversion

To convert between types, you simply use the type name as a function.

There are several built-in functions to perform conversion from one data type to
another. These functions return a new object representing the converted value.

SNo. Function Description

1
int(x [,base]) Converts x to an integer. base specifies the base if x is a string.

2 long(x [,base]) Converts x to a long integer. base specifies the base if x is a string.

3 float(x) Converts x to a floating-point number.

4 complex(real [,imag]) Creates a complex number.

5 str(x) Converts object x to a string representation.

6 repr(x) Converts object x to an expression string.

7 eval(str) Evaluates a string and returns an object.

8 tuple(s). Converts s to a tuple

9 list(s) Converts s to a list.

10 set(s) Converts s to a set.

11 dict(d) Creates a dictionary. d must be a sequence of (key,value) tuples.

12 frozenset(s) Converts s to a frozen set.

13 chr(x) Converts an integer to a character.

14 unichr(x). Converts an integer to a Unicode character

15 ord(x). Converts a single character to its integer value

16 hex(x) Converts an integer to a hexadecimal string.

17 oct(x) Converts an integer to an octal string.

