
 Programming and Problem Solving through Python Language
O Level / A Level
 Chapter - 6 : Functions

Function Arguments
A function can be called by using the following types of formal arguments −

 Required arguments
 Keyword arguments(kwargs)
 Default arguments
 Variable-length arguments or Arbitrary Arguments(*args)
 Arbitrary Keyword Arguments (**kwargs)

Variable-length Arguments or Arbitrary Arguments(*args)

 If you do not know how many arguments that will be passed into your function, add
an asterisk (*) before the parameter name in the function definition.

 This variable name holds the values of all non keyword variable arguments.
 The function will receive a tuple of arguments, and can access the items accordingly. This

tuple remains empty if no additional arguments are specified during the function call.

Example -1

def my_function(*kids):
 print("The youngest child is " + kids[2])

my_function("Ajay", "Vijay", "Sanjay")

Output- The youngest child is Sanjay

Example -2
 def printno(arg1, *vartuple):

 "This prints a variable passed arguments"
 print ("Output is: ")
 print (arg1)

 for var in vartuple:
 print (var)

printno(10)
printno(70, 60, 50)

Output is:
10
Output is:
70
60
50

Arbitrary Keyword Arguments (**kwargs)

 If you do not know how many keyword arguments that will be passed into your function,
add two asterisk(**) before the parameter name in the function definition.

 This way the function will receive a dictionary of arguments, and can access the items
accordingly.

def my_function(**kid):
 print("His last name is " + kid["lname"])

my_function(fname = "Ajay", lname = "Kumar")

Recursion

Python also accepts function recursion, which means a defined function can call itself.

def fact(k):
"This function returns the factorial of a number"

 If (k > 0):
 f = k * fact(k - 1)
 else:
 f = 1
 return f

print("\n\n Recursion Example Results")
r=fact(5)
print("factorial=", r)

The Anonymous Functions
 The functions are called anonymous when it is not declared in the standard manner by using

the def keyword.
 The lambda keyword used to create small anonymous functions.
 Lambda forms can take any number of arguments but return just one value in the form of an

expression. They cannot contain commands or multiple expressions.
 An anonymous function cannot be a direct call to print because lambda requires an

expression.
 Lambda functions have their own local namespace and cannot access variables other than

those in their parameter list and those in the global namespace.

 Syntax
 lambda [arg1 [,arg2,.....argn]] : expression

Function definition is here
sum = lambda arg1, arg2: arg1 + arg2

Now you can call sum as a function
print ("Value of total : ", sum(10, 20))
print ("Value of total : ", sum(20, 20))

Scope of Variables
All variables in a program may not be accessible at all locations in that program. This depends on
where you have declared a variable.
The scope of a variable determines the portion of the program where you can access a particular
identifier. There are two basic scopes of variables in Python −

 Global variables
 Local variables

Global vs. Local variables

 Variables that are defined inside a function body have a local scope, and those defined
outside have a global scope.

 This means that local variables can be accessed only inside the function in which they are
declared, whereas global variables can be accessed throughout the program body by all
functions.

 When we call a function, the variables declared inside it are brought into scope.

Example 1 : In this example TOTAL is the Local variable in SUM () function.

total = 0 # This is global variable.

Function definition i

def sum(arg1, arg2):
 # Add both the parameters and return them."
 total = arg1 + arg2; # Here total is local variable.
 print ("Inside the function local total : ", total)

Now you can call sum function
sum(10, 20)
print ("Outside the function global total : ", total)

Output

Inside the function local total : 30
Outside the function global total : 0

Example 2 : In this example TOTAL is the GLOBAL variable in SUM () function.
GLOBAL keyword is used link the variable defined within the function with the global
scope.

total = 0 # This is global variable.
Function definition

def sum(arg1, arg2):
 # Add both the parameters and return them."
global total
 total = arg1 + arg2; # Here total is local variable.
 print ("Inside the function local total : ", total)

Now you can call sum function
sum(10, 20)
print ("Outside the function global total : ", total)

Output

Inside the function local total : 30
Outside the function global total : 30

