
 Programming and Problem Solving through Python Language
O Level / A Level
 Chapter - 6 : Functions

Function Arguments
A function can be called by using the following types of formal arguments −

 Required arguments
 Keyword arguments(kwargs)
 Default arguments
 Variable-length arguments or Arbitrary Arguments(*args)
 Arbitrary Keyword Arguments (**kwargs)

Variable-length Arguments or Arbitrary Arguments(*args)

 If you do not know how many arguments that will be passed into your function, add
an asterisk (*) before the parameter name in the function definition.

 This variable name holds the values of all non keyword variable arguments.
 The function will receive a tuple of arguments, and can access the items accordingly. This

tuple remains empty if no additional arguments are specified during the function call.

Example -1

def my_function(*kids):
 print("The youngest child is " + kids[2])

my_function("Ajay", "Vijay", "Sanjay")

Output- The youngest child is Sanjay

Example -2
 def printno(arg1, *vartuple):

 "This prints a variable passed arguments"
 print ("Output is: ")
 print (arg1)

 for var in vartuple:
 print (var)

printno(10)
printno(70, 60, 50)

Output is:
10
Output is:
70
60
50

Arbitrary Keyword Arguments (**kwargs)

 If you do not know how many keyword arguments that will be passed into your function,
add two asterisk(**) before the parameter name in the function definition.

 This way the function will receive a dictionary of arguments, and can access the items
accordingly.

def my_function(**kid):
 print("His last name is " + kid["lname"])

my_function(fname = "Ajay", lname = "Kumar")

Recursion

Python also accepts function recursion, which means a defined function can call itself.

def fact(k):
"This function returns the factorial of a number"

 If (k > 0):
 f = k * fact(k - 1)
 else:
 f = 1
 return f

print("\n\n Recursion Example Results")
r=fact(5)
print("factorial=", r)

The Anonymous Functions
 The functions are called anonymous when it is not declared in the standard manner by using

the def keyword.
 The lambda keyword used to create small anonymous functions.
 Lambda forms can take any number of arguments but return just one value in the form of an

expression. They cannot contain commands or multiple expressions.
 An anonymous function cannot be a direct call to print because lambda requires an

expression.
 Lambda functions have their own local namespace and cannot access variables other than

those in their parameter list and those in the global namespace.

 Syntax
 lambda [arg1 [,arg2,.....argn]] : expression

Function definition is here
sum = lambda arg1, arg2: arg1 + arg2

Now you can call sum as a function
print ("Value of total : ", sum(10, 20))
print ("Value of total : ", sum(20, 20))

Scope of Variables
All variables in a program may not be accessible at all locations in that program. This depends on
where you have declared a variable.
The scope of a variable determines the portion of the program where you can access a particular
identifier. There are two basic scopes of variables in Python −

 Global variables
 Local variables

Global vs. Local variables

 Variables that are defined inside a function body have a local scope, and those defined
outside have a global scope.

 This means that local variables can be accessed only inside the function in which they are
declared, whereas global variables can be accessed throughout the program body by all
functions.

 When we call a function, the variables declared inside it are brought into scope.

Example 1 : In this example TOTAL is the Local variable in SUM () function.

total = 0 # This is global variable.

Function definition i

def sum(arg1, arg2):
 # Add both the parameters and return them."
 total = arg1 + arg2; # Here total is local variable.
 print ("Inside the function local total : ", total)

Now you can call sum function
sum(10, 20)
print ("Outside the function global total : ", total)

Output

Inside the function local total : 30
Outside the function global total : 0

Example 2 : In this example TOTAL is the GLOBAL variable in SUM () function.
GLOBAL keyword is used link the variable defined within the function with the global
scope.

total = 0 # This is global variable.
Function definition

def sum(arg1, arg2):
 # Add both the parameters and return them."
global total
 total = arg1 + arg2; # Here total is local variable.
 print ("Inside the function local total : ", total)

Now you can call sum function
sum(10, 20)
print ("Outside the function global total : ", total)

Output

Inside the function local total : 30
Outside the function global total : 30

