
 Programming and Problem Solving through Python Language
O Level / A Level
 Chapter - 6 : Functions

Approach of Problem Solving
 There are three general approaches to writing a program:

1. Top down - In the top down approach one starts with the toplevel routine and move down to the
low level routine.

2. Bottom up - The bottomup approach works in the opposite direction on begins with the specific
routines, build them into progressively more complex structures, and end at the top level routine.

3. Ad hoc - The ad hoc approach specifies no predetermined method.

Top-down approach

 A top down approach also helps one to clarify the overall structure and operation of the
program before one code the low level functions.

 The top down method starts with a general description and works towards specifics.
 A good way to design a program is to define exactly what the program is going to do at

the top level.
 Each entry in the list should contain only one functional unit.
 A functional unit can be thought of as a black box that performs a single task. Modular

programming
 Modular programming is a style that adds structure and readability to the program code.
 It may not make much difference on small projects, but as one starts to work on

something bigger it can make the code much easier to read and maintain.
 Structuring the code is a simple task of splitting the program into manageable part so that

each part is self contained.
 By creating these self contained modules, one can focus on programming each part.

Functions

 A function is a named, independent section of Python code that performs a specific task
and optionally returns a value to the calling program.

 A function is named. Each function has a unique name.
 By using the name in another part of the program, one can execute the statements

contained in the function. This is known as calling the function.
 A function can be called from within any other function.
 A function is independent.
 A function can perform its task without interference from or interfering with other parts

of the program.

Defining a Function
 Function blocks begin with the keyword def followed by the function name and parentheses

().
 Any input parameters or arguments should be placed within these parentheses. We can also

define parameters inside these parentheses.
 The first statement of a function can be an optional statement - the documentation string of

the function or docstring.
 The code block within every function starts with a colon (:) and is indented.
 The statement return [expression] exits a function, optionally passing back an expression to

the caller. A return statement with no arguments is the same as return None.

Syntax

def function_name(parameters) :
 "function_docstring"
 function_local variable
 function statements
 return [expression]

Example

Function definition is here
def printme(str):
 "This prints a passed string into this function" # docstring
 print (str)
 return

Now you can call printme function
printme("This is first call to the user defined function!")
printme("Again second call to the same function")

Output

This is first call to the user defined function!
Again second call to the same function

Built-in Python Functions

SNo Function Description
1. input() Allowing user input
2. print() Prints to the standard output device
3. int() Returns an integer number
4. float() Returns a floating point number
5. list() Returns a list
6. dict() Returns a dictionary (Array)
7. set() Returns a new set object
8. str() Returns a string object
9. tuple() Returns a tuple
10. type() Returns the type of an object
11. len() Returns the length of an object
12. format() Formats a specified value
13. abs() Returns the absolute value of a number
14. eval() Evaluates and executes an expression
15. round() Rounds a numbers
16. max() Returns the largest item in an iterable
17. min() Returns the smallest item in an iterable
18. oct() Converts a number into an octal
19. pow() Returns the value of x to the power of y
20. range() Returns a sequence of numbers, starting from 0 and increments by 1

(by default)

1. input() Function

The input() function allows user input.
input(prompt)
 x = input('Enter your name:')

2. print() Function
 The print() function prints the specified message to the screen, or other standard output

device. The message can be a string, or any other object, the object will be converted into a string
before written to the screen

print(object(s), sep=separator, end=end, file=file, flush=flush)
object(s) Any object, and as many as you like. Will be converted to string before

printed
sep='separator' Optional. Specify how to separate the objects, if there is more than one.

Default is ' '
end='end' Optional. Specify what to print at the end. Default is '\n' (line feed)
file Optional. An object with a write method. Default is sys.stdout
flush Optional. A Boolean, specifying if the output is flushed (True) or buffered

(False). Default is False

 print("Hello", "how are you?")

x = ("apple", "banana", "cherry")
print(x)
print("Hello", "how are you?", sep="---")

3. int() Function

The int() function converts the specified value into an integer number.
Syntax : int(value, base)

value A number or a string that can be converted into an integer number
base A number representing the number format. Default value: 10

x = int("12")
print(x+10)

3. float() Function

The float() function converts the specified value into a floating point number..
Syntax : float(value)

x = float(3)
print(x)
x = float("3.500")
print(x)

4. list() Function :
The list() function creates a list object.
A list object is a collection which is ordered and changeable.

5. dict() Function :

The dict() function creates a dictionary.
A dictionary is a collection which is unordered, changeable and indexed.

6. set() Function

The set() function creates a set object.
The items in a set list are unordered, so it will appear in random order.

7. str() Function

The str() function converts the specified value into a string.

8. tuple() Function

The tuple() function creates a tuple object.
We cannot change or remove items in a tuple.

 Note – Function list(), dict(), set(), str() & tuple() already covered in Chapter -5 .

9. type() Function

The type() function returns the type of the specified object.

a = ('apple', 'banana', 'cherry')
b = "Hello World"
c = 33

x = type(a)
y = type(b)
z = type(c)

10. len() Function

The len() function returns the number of items in an object.
When the object is a string, it returns the number of characters in the string.

mylist = ["apple", "banana", "cherry"]
x = len(mylist)
print(x)

mylist = "Hello"
x = len(mylist)
print(x)

11. format() Function The format() function formats a specified value into a specified format

format(value, format)
Parameter Description
value A value of any format
format The format you want to format the value into.

Legal values:
'<' - Left aligns the result (within the available space)
'>' - Right aligns the result (within the available space)
'^' - Center aligns the result (within the available space)
'=' - Places the sign to the left most position
'+' - Use a plus sign to indicate if the result is positive or negative
'-' - Use a minus sign for negative values only
' ' - Use a leading space for positive numbers
',' - Use a comma as a thousand separator
'_' - Use a underscore as a thousand separator
'b' - Binary format
'c' - Converts the value into the corresponding unicode character
'd' - Decimal format
'e' - Scientific format, with a lower case e
'E' - Scientific format, with an upper case E
'f' - Fix point number format
'F' - Fix point number format, upper case
'g' - General format
'G' - General format (using a upper case E for scientific notations)
'o' - Octal format
'x' - Hex format, lower case
'X' - Hex format, upper case
'n' - Number format
'%' - Percentage format

 x = format(0.5, '%') Output - 50.000000% x = format(255, 'x') Output - ff

