
 Programming and Problem Solving through Python Language
O Level / A Level
 Chapter - 5: Sequence Data Types

Python Collections (Arrays)
There are four collection data types in the Python programming language:

 List is a collection which is ordered and changeable. Allows duplicate members.
 Tuple is a collection which is ordered and unchangeable. Allows duplicate members.
 Set is a collection which is unordered and unindexed. No duplicate members.
 Dictionary is a collection which is unordered, changeable and indexed. No duplicate

members.

Set
 A Set is a collection which is unordered and unindexed. In Python sets are written with

curly brackets.
 The sets in python are typically used for mathematical operations like union, intersection,

difference and complement etc.
 The Set is a datatype available in Python which can be written as comma-separated

values (items) between parentheses.
 Items in a Set need not be of the same type.
 The set list is unordered means the items will appear in a random order on the screen.

Creating Set

set1 = { 'physics', 'chemistry', 1997, 2000 }
set2 = { 1, 2, 3, 4, 5 }
set3 = { "a", "b", "c", "d" }
 Access Items
We cannot access individual values in a set. We can only access all the elements together.

set1 = { 'physics', 'chemistry', 1997, 2000 }
set2 = { 1, 2, 3, 4, 5, 6, 7 }
print ("set1: ", set1)
print ("set1[1]: ", set1[1) # Index not allowed in Set
print ("tset2[3]: ", set2[-1]) # Negative Index not allowed in Set

Output−
set1: {1997, 'physics', 'chemistry', 2000 }

Negative Indexing
Negative indexing not allowed in Sets.

 Range of Indexes (Slicing)
 Range of index or slicing is not allowed in Sets.
 Range of Negative Indexes
 Range of index or slicing is not allowed in Sets.

Updating Set

Once a set is created, you cannot change its items, but you can add new items.
 set1 = { 12, 34.56 }

set2 = { 'abc', 'xyz' }
 # Following action is not valid for sets
 # set1[0] = 100
set3 = set1 + set2

Adding new item in Set

 To add one item to a set use the add() method.
 To add more than one item to a set use the update(collection) method.

 s = { 10, 20, 30, 40 }
s = t.add(60)
print (t)
s = t.update([70 , 80])
print (t)
 s = t.update('ABC')
 Output
{ 10, 60, 30, 40, 20 }
{ 80, 10, 60, 30, 40, 20,70 }
{ 80, 10, 60, 30, 40, 20,70, 'A', 'B', 'C'}

Loop Through a Sets
You can loop through the Set items by using a for loop:
 set = { "apple", "banana", "cherry" }
for x in list:
 print(x)

Check if Item Sets

To determine if a specified item is present in a Set use the “in” keyword:
set = { "apple", "banana", "cherry" }
if "apple" in set:
 print("Yes, 'apple' is in the fruits Set")

Length of Set

To determine how many items a Set has, use the len() function. e.g. print(len(set))
 Removing Item from the Set

 To remove an item in a set, use the remove(), or the discard() method.
 If the item to remove does not exist, remove() will raise an error.
 If the item to remove does not exist, discard() will NOT raise an error.
 The pop() method to remove the last item. As the sets are unordered, so we will not

know what item gets removed.
 The clear() method empties the set. eg set.clear()
 The del keyword will delete the set completely. eg. del set

 set = { "apple", "banana", "cherry" }
set.remove("banana")
set.discard("apple")

Union of Sets
 The union operation on two sets produces a new set containing all the distinct

elements from both the sets. We can use the union() method that returns a new set containing all items from both
sets. We can use the update() method that inserts all the items from one set into another.

 We can use the | for union operation on two sets.
DaysA = {"Mon","Tue","Wed" }
DaysB = { "Wed","Thu","Fri","Sat","Sun" }
D1 = DaysA | DaysB
D2 = DaysA.union(DaysB)
D3 = DaysA.update(DaysB)
print(D1)
print(D2)
print(D3)
Output {'Thu', 'Sat', 'Tue', 'Sun', 'Mon', 'Fri', 'Wed'}
 {'Sat' , 'Thu', 'Tue', 'Sun', 'Mon', 'Wed', 'Fri'}

Intersection of Sets

 The intersection operation on two sets produces a new set containing only the common
elements from both the sets.

 We can use the & for union operation on two sets.
 We can use the intersection() method returns a set that contains the similarity between

two or more sets
DaysA = { "Mon", "Tue", "Wed" }
DaysB = { "Wed","Thu","Fri","Sat","Sun" }
D1 = DaysA & DaysB
D2 = DaysA.intersection(DaysB)
print(D1)
print(D2)

Output {'Wed'}
{'Wed'}

Difference of Sets

 The difference operation on two sets produces a new set containing only the elements
from the first set and none from the second set.

 We can use the - for union operation on two sets.
 We can use the difference() method returns a set that contains the difference between

two sets. The returned set contains items that exist only in the first set, and not in both
sets.

DaysA = { "Mon", "Tue", "Wed" }
DaysB = { "Wed","Thu","Fri","Sat","Sun" }
D1 = DaysA - DaysB
D2 = DaysA.difference(DaysB)
print(D1)
print(D2)

 Output {'Mon', 'Tue'}
 {'Mon', 'Tue'}

Disjoint Sets The isdisjoint() method returns True if none of the items are present in both sets,

otherwise it returns False.
x = {"apple", "banana", "cherry"}
y = {"google", "microsoft", "apple"}
 z = x.isdisjoint(y)
print(z)

 Output False

Compare Sets
 We can check if a given set is a subset or superset of another set. The result is True or

False depending on the elements present in the sets.
 The issubset() method returns True if all items in the set exists in the specified set,

otherwise it retuns False. <= can also be used for subset.
 The issuperset() method returns True if all items in the specified set exists in the original

set, otherwise it retuns False. >= can also be used for superset.
DaysA = set(["Mon","Tue","Wed"])
DaysB = set(["Mon","Tue","Wed","Thu","Fri","Sat","Sun"])
SubsetRes = DaysA <= DaysB
SupersetRes = DaysB >= DaysA
print(SubsetRes)
print(SupersetRes)
 SubsetRes = DaysA.issubset(DaysB)
SupersetRes = DaysB.issuperset(DaysA)
print(SubsetRes)
print(SupersetRes)

 Output True
True
True
True

symmetric_difference

 The symmetric_difference() method returns a set that contains all items from
both set, but not the items that are present in both sets.

x = {"apple", "banana", "cherry"}
y = {"google", "microsoft", "apple"}

z = x.symmetric_difference(y)
print(z)
Output {'google', 'microsoft', 'banana', 'cherry'}

Assignment
1. Define Sets
2. Write the output from the following code:

x = {"a", "b", "c"} y = {"c", "d", "e"} z = {"f", "g", "c"} result = x.intersection(y, z)
print(result)
t1=(10,20,30)
 print len(t1)

3. Write a program to input ‘n’ numbers in two sets and merge the Set in the following
manner.

 Example
 T1 =(10,30,50)
 T2=(20,40,60)
T=(10,20,30,40,50,60)

