
 Programming and Problem Solving through Python Language
O Level / A Level
 Chapter -4 : Operators, Expressions and Python Statements

Nested loops
Python programming language allows using one loop inside another while or for loop.

Syntax nested for loop
for iterating_var in sequence:
 for iterating_var in sequence:
 statements(s)
 statements(s)

Syntax nested while loop

while expression:
 while expression:
 statement(s)
 statement(s)

Program uses a nested for loop to find the prime numbers from 2 to 100

i = 2
while(i < 100):
 j = 2
 while(j <= (i/j)):
 if not(i%j): break
 j = j + 1
 if (j > i/j) : print (i, " is prime")
 i = i + 1

Output It gives the list of prime number from 2 to 100 .

 Program uses a nested-for loop to display multiplication tables from 1-10.

for i in range(1,11):
 for j in range(1,11):
 k = i*j
 print (k, end=' ')
 print()

Output
 1 2 3 4 5 6 7 8 9 10 2 4 6 8 10 12 14 16 18 20 3 6 9 12 15 18 21 24 27 30 4 8 12 16 20 24 28 32 36 40 5 10 15 20 25 30 35 40 45 50 6 12 18 24 30 36 42 48 54 60 7 14 21 28 35 42 49 56 63 70 8 16 24 32 40 48 56 64 72 80 9 18 27 36 45 54 63 72 81 90 10 20 30 40 50 60 70 80 90 100

Program to print the pattern

for i in range(1,6):
 for j in range(i):
 print("*",end=' ')
 print()

Output
 * * * * * * * * * * * * * * *

Loop Control Statements
Loop control statements change execution from its normal sequence. When execution
leaves a scope, all automatic objects that were created in that scope are destroyed.

break statement Terminates the loop statement and transfers execution to
the statement immediately following the loop.

continue statement Causes the loop to skip the remainder of its body and
immediately retest its condition prior to reiterating.

pass statement

The pass statement in Python is used when a statement is
required syntactically but you do not want any command
or code to execute.

break statement

 It terminates the current loop and resumes execution at the next statement, just like the
traditional break statement in C.

 The most common use for break is when some external condition is triggered requiring a
hasty exit from a loop. The break statement can be used in both while and for loops.

 If you are using nested loops, the break statement stops the execution of the innermost
loop and start executing the next line of code after the block.

 Example

for letter in 'Python': # First Example if letter == 'h': break print ('Current Letter :', letter)

Output Current Letter : P Current Letter : y Current Letter : t

Continue statement

 It returns the control to the beginning of the while loop.. The continue statement rejects
all the remaining statements in the current iteration of the loop and moves the control
back to the top of the loop.

 The continue statement can be used in both while and for loops.

 Example

for letter in 'Python': # First Example if letter == 'h': continue print 'Current Letter :', letter

Output Current Letter : P Current Letter : y Current Letter : t Current Letter : o Current Letter : n

 pass statement

 It is used when a statement is required syntactically but you do not want any command
or code to execute.

 The pass statement is a null operation; nothing happens when it executes. The pass is
also useful in places where your code will eventually go, but has not been written yet

 Example

for letter in 'Python': if letter == 'h': pass print 'This is pass block' print 'Current Letter :', letter

Output Current Letter : P Current Letter : y Current Letter : t This is pass block Current Letter : h Current Letter : o Current Letter : n

