

Programming and Problem Solving through Python Language
O Level / A Level

Chapter -3 : Introduction to Python Language

Python is a high­level general purpose programming language:

• Because code is automatically compiled to byte code and executed, Python is suitable for
use as a scripting language, Web application implementation language, etc.

• Because Python can be extended in C and C++, Python can provide the speed needed for
even compute intensive tasks.

• Because of its strong structuring constructs (nested code blocks, functions, classes,
modules, and packages) and its consistent use of objects and object­oriented
programming, Python enables us to write clear, logical applications for small and large
tasks.

Varieties of Python:

• CPython ­­ Standard Python 2.x implemented in C.
• Jython ­­ Python for the Java environment ­­ http://www.jython.org/
• PyPy ­­ Python with a JIT compiler and stackless mode ­­ http://pypy.org/
• Stackless ­­ Python with enhanced thread support and microthreads etc. ­­

http://www.stackless.com/
• IronPython ­­ Python for .NET and the CLR ­­ http://ironpython.net/
• Python 3 ­­ The new, new Python. This is intended as a replacement for

Python 2.x. ­­ http://www.python.org/doc/.

 Names and tokens

• Allowed characters: a­z A­Z 0­9 underscore, and must begin with a letter or underscore.
• Names and identifiers are case sensitive.
• Identifiers can be of unlimited length.
• Special names, customizing, etc. ­­ Usually begin and end in double underscores.
• Special name classes ­­ Single and double underscores.

o Single leading single underscore ­­ Suggests a "private" method or variable
name. Not imported by "from module import *".

o Single trailing underscore ­­ Use it to avoid conflicts with Python keywords.
o Double leading underscores ­­ Used in a class definition to cause name

mangling (weak hiding). But, not often used.
• Naming conventions ­­ Not rigid, but:

o Modules and packages ­­ all lower case.
o Globals and constants ­­ Upper case.
o Classes ­­ Bumpy caps with initial upper.
o Methods and functions ­­ All lower case with words separated by underscores.
o Local variables ­­ Lower case (with underscore between words) or bumpy

caps with initial lower or your choice.
o Good advice ­­ Follow the conventions used in the code on which you are

working.
• Names/variables in Python do not have a type. Values have types.

Comments
• Everything after "#" on a line is ignored.
• No block comments, but doc strings are a comment in quotes at the beginning of a

module, class, method or function.
• Editors with support for Python often provide the ability to comment out selected

blocks of code, usually with "##".
• A doc string is written as a quoted string that is at the top of a module or the first

lines after the header line of a function or class. We can use triple­quoting to
create doc strings that span multiple lines.

Blocks and indentation

• Python represents block structure and nested block structure with indentation, not with
begin and end brackets.

• The empty block ­­ Use the pass no­op statement.
• Benefits of the use of indentation to indicate structure:

o Reduces the need for a coding standard. Only need to specify that indentation is 4
spaces and no hard tabs.

o Reduces inconsistency. Code from different sources follow the same indentation
style. It has to.

o Reduces work. Only need to get the indentation correct, not both indentation and
brackets.

o Reduces clutter. Eliminates all the curly brackets.
o If it looks correct, it is correct. Indentation cannot fool the reader.

 Lines

• Statement separator is a semi­colon, but is only needed when there is more than one
statement on a line. And, writing more than one statement on the same line is considered
bad form.

• Continuation lines ­­ A back­slash as last character of the line makes the following line a
continuation of the current line. But, note that an opening context" (parenthesis, square
bracket, or curly bracket) makes the back­slash unnecessary.

Program structure

• Execution ­­ def, class, etc are executable statements that add something to the current
name­space. Modules can be both executable and import­able.

• Statements, data structures, functions, classes, modules, packages.
• Functions
• Classes
• Modules correspond to files with a "*.py" extension. Packages correspond to a

directory (or folder) in the file system; a package contains a file named "__init__.py".
Both modules and packages can be imported

• Packages ­­ A directory containing a file named "__init__.py". Can provide additional
initialization when the package or a module in it is loaded (imported).

