

Programming and Problem Solving through Python Language
O Level / A Level

Chapter -3 : Introduction to Python Language

Python is a highlevel general purpose programming language:

• Because code is automatically compiled to byte code and executed, Python is suitable for
use as a scripting language, Web application implementation language, etc.

• Because Python can be extended in C and C++, Python can provide the speed needed for
even compute intensive tasks.

• Because of its strong structuring constructs (nested code blocks, functions, classes,
modules, and packages) and its consistent use of objects and objectoriented
programming, Python enables us to write clear, logical applications for small and large
tasks.

Varieties of Python:

• CPython Standard Python 2.x implemented in C.
• Jython Python for the Java environment http://www.jython.org/
• PyPy Python with a JIT compiler and stackless mode http://pypy.org/
• Stackless Python with enhanced thread support and microthreads etc.

http://www.stackless.com/
• IronPython Python for .NET and the CLR http://ironpython.net/
• Python 3 The new, new Python. This is intended as a replacement for

Python 2.x. http://www.python.org/doc/.

 Names and tokens

• Allowed characters: az AZ 09 underscore, and must begin with a letter or underscore.
• Names and identifiers are case sensitive.
• Identifiers can be of unlimited length.
• Special names, customizing, etc. Usually begin and end in double underscores.
• Special name classes Single and double underscores.

o Single leading single underscore Suggests a "private" method or variable
name. Not imported by "from module import *".

o Single trailing underscore Use it to avoid conflicts with Python keywords.
o Double leading underscores Used in a class definition to cause name

mangling (weak hiding). But, not often used.
• Naming conventions Not rigid, but:

o Modules and packages all lower case.
o Globals and constants Upper case.
o Classes Bumpy caps with initial upper.
o Methods and functions All lower case with words separated by underscores.
o Local variables Lower case (with underscore between words) or bumpy

caps with initial lower or your choice.
o Good advice Follow the conventions used in the code on which you are

working.
• Names/variables in Python do not have a type. Values have types.

Comments
• Everything after "#" on a line is ignored.
• No block comments, but doc strings are a comment in quotes at the beginning of a

module, class, method or function.
• Editors with support for Python often provide the ability to comment out selected

blocks of code, usually with "##".
• A doc string is written as a quoted string that is at the top of a module or the first

lines after the header line of a function or class. We can use triplequoting to
create doc strings that span multiple lines.

Blocks and indentation

• Python represents block structure and nested block structure with indentation, not with
begin and end brackets.

• The empty block Use the pass noop statement.
• Benefits of the use of indentation to indicate structure:

o Reduces the need for a coding standard. Only need to specify that indentation is 4
spaces and no hard tabs.

o Reduces inconsistency. Code from different sources follow the same indentation
style. It has to.

o Reduces work. Only need to get the indentation correct, not both indentation and
brackets.

o Reduces clutter. Eliminates all the curly brackets.
o If it looks correct, it is correct. Indentation cannot fool the reader.

 Lines

• Statement separator is a semicolon, but is only needed when there is more than one
statement on a line. And, writing more than one statement on the same line is considered
bad form.

• Continuation lines A backslash as last character of the line makes the following line a
continuation of the current line. But, note that an opening context" (parenthesis, square
bracket, or curly bracket) makes the backslash unnecessary.

Program structure

• Execution def, class, etc are executable statements that add something to the current
namespace. Modules can be both executable and importable.

• Statements, data structures, functions, classes, modules, packages.
• Functions
• Classes
• Modules correspond to files with a "*.py" extension. Packages correspond to a

directory (or folder) in the file system; a package contains a file named "__init__.py".
Both modules and packages can be imported

• Packages A directory containing a file named "__init__.py". Can provide additional
initialization when the package or a module in it is loaded (imported).

