

Programming and Problem Solving through Python Language
O Level / A Level

Chapter - 7 : File Processing

Concepts of Files
 Many realworld problems handle large volume of data and in such situations external

storage devices like the floppy disk and the hard disks are used.
 Data is stored in these devices using the concept of files.
 A file is a collection of related data stored on a particular area of the disk.

Filenames
 Every disk file has a name, and one must use filenames when dealing with disk files.
 Filenames are stored as strings, just like other text data.
 The rules as to what is acceptable for filenames and what is not, differ from one operating

system to another.

File Opening in Various Modes and Closing of a File

Opening a File

 The process of creating a stream linked to a disk file is called opening the file.
 When one opens a file, it becomes available for

o reading (meaning that data is input from the file to the program),
o writing (meaning that data from the program is saved in the file), or
o both.

 After working with the file, close the file.

Syntax File_Pointer = open(filename , mode)

Example fp=open("test.txt", 'r') open the text file for reading
 fp=open("test.txt", 'rt') open the text file for reading

Modes of Opening a File

Character Mode Description

"r" Read Default value. Opens a file for reading, error
if the file does not exist

"a" Append Opens a file for appending, creates the file if
it does not exist

"w" Write Opens a file for writing, creates the file if it
does not exist

"x" Create Creates the specified file, returns an error if
the file exists

"+" Update Open a file for reading and writing . Used
with r+ ,a+

"t" Text Default value. Text mode eg. rt , wt , at, xt
"b" Binary Binary mode (e.g. images) eg. rb , wb, ab, xb

Closing a File
 When we are done the operations on the file, we need to close the file.
 Closing a file will free up the resources attached with the file.
 It is done using the close() method available in Python.

Syntax File_Pointer.close()

Example

fp=open("test.txt", 'w')

fp.close()

Writing a File
 Writing a string or sequence of bytes (for binary files) is done using the write() method.
 To write into a file in Python, it is need to open it in write(w), append(a) or exclusive

creation(x) mode.
 The write(w) mode, overwrite into the file if it already exists.

Syntax File_Pointer.write(string)

Example

fp=open("test.txt", 'w')

fp.write("My File1\n")

fp.write("Line2\n")

fp.write("Line3")

fp.close()

Reading a File
 To read the content from the file use the read(size) method to read data.
 If the size parameter is not specified, it reads and returns up to the end of the file.
 To read from a file in Python, it is need to open it with read(r) mode.

Syntax File_Pointer.read(size)

Example
fp=open("test.txt", 'r')

#Read the first 4 character

x=fp.read(4)

print(x)

#Read the next 4 character

x=fp.read(4)

print(x)

#Read the remaining character

x=fp.read()

print(x)

fp.close()

Output
My F

ile

1
Line2
Line3

Reading a Line from File

 We use the readline() method to read individual lines of a file.

Syntax File_Pointer.readline()

Example

fp=open("test.txt", 'r')

#Read the first line

x=fp.readline()

print(x)

#Read the next line

x=fp.readline()

print(x)

#Read the next line

x=fp.readline()

print(x)

fp.close()

Output
My File1

Line2

Line3

Reading a complete File line by line
 We can read a file linebyline using a for loop

Syntax for line in File_Pointer:

x=line
Example

fp=open("test.txt", 'r')

for line in fp:

x=line
print(x)

fp.close()
Output

My File1

Line2

Line3

