
 1

NIELIT Gorakhpur

Course name: A level SUBJECT:DATABASE TECHNOLOGIES

Topic: MongoDB DATE: 18/5/2020

Aggregation Framework

Aggregation is an operation used to process the data that returns the computed results. In Simple

words, Aggregation groups the data from multiple documents in a collection and operates in

several ways on those grouped data in order to return one combined result i.e. total

number(sum), average, minimum, maximum etc out of the group selected. In SQL count(*) and

with “group by” is an equivalent of MongoDB aggregation. In MongoDB, aggregate() method is

used for the aggregation

Syntax

db.COLLECTION_NAME.aggregate(pipeline, options))

where

Name Description Type

pipeline A sequence of data aggregation operations or stages.

The method can still accept the pipeline stages as separate

arguments instead of as elements in an array; however, if you do not

specify the pipeline as an array, you cannot specify the options

parameter.

Array
(required)

options Additional options that aggregate() passes to the aggregate
command.

Document
(optional)

Aggregation Stages or Aggregation pipeline operators

Name Description

$match The $match operator filters the documents stram to pass only those documents

that match the specified condition(s) to the next pipeline stage. $match uses

standard MongoDB queries. For each input document, outputs either one

document (a match) or zero documents (no match).

$project The $project function in MongoDB passes along the documents with only the

specified fields to the next stage in the pipeline, i.e. it Reshapes each document

in the stream, such as by adding new fields or removing existing fields where

the field may be the existing fields from the input documents or newly computed

fields.

$group In MongoDB, the $group operator groups the input documents by the specified

 2

expression and groups the document for each distinct grouping. An identifier

(_id) field in the output documents contains the distinct group by key. The

output documents can also contain computed fields that hold the values of

some accumulator expression grouped by the $group‘s _id(identifier) field.

$unwind The $unwind operator is used to deconstructing an array field from the input

documents to output a document for each element. Each output document

replaces the array with an element value i.e. Every output document is the

input document with the value of the array field replaced by the element.

$sort $ sort is used to Reorders the document stream by a specified sort key. It only

changes the order not the documents. For each input document, outputs one

document is there..

$limit $limit operator Passes the first n documents unmodified to the pipeline where n

is the specified limit. For each input document, outputs either one document (for

the first n documents) or zero documents (after the first n documents).

$skip $skip operator Skips the first n documents where n is the specified skip number

and passes the remaining documents unmodified to the pipeline. For each input

document, outputs either zero documents (for the first n documents) or one

document (if after the first n documents).

$set

$set, adds new fields to documents. Similar to $operator, $set reshapes each

document in the stream; specifically, by adding new fields to output documents

that contain both the existing fields from the input documents and the newly

added fields.

$unset Removes/excludes fields from documents.

Different expressions used by Aggregate function

Expression Description

$sum Summates the defined values from all the documents in a collection

$avg Calculates the average values from all the documents in a collection

$min Return the minimum of all values of documents in a collection

$max Return the maximum of all values of documents in a collection

$addToSet Inserts values to an array but no duplicates in the resulting document

$push Inserts values to an array in the resulting document

$first Returns the first document from the source document

$last Returns the last document from the source document

 3

Aggregation Pipeline

The aggregation pipeline is a framework for data aggregation modeled on the concept of data

processing pipelines. Documents enter a multi-stage pipeline that transforms the documents into

aggregated results.

Pipeline

The MongoDB aggregation pipeline consists of stages (aggregation states). Each stage

transforms the documents as they pass through the pipeline. Pipeline stages do not need to

produce one output document for every input document; e.g., some stages may generate new

documents or filter out documents based on the various operators and functions etc.

The most basic pipeline stages provide filters that operate like queries and document

transformations that modify the form of the output document.

Other pipeline operations provide tools for grouping and sorting documents by specific field or

fields as well as tools for aggregating the contents of arrays, including arrays of documents. In

addition, pipeline stages can use operators for tasks such as calculating the average, Sum, Min,

MAX or concatenating a string also.

The pipeline provides efficient data aggregation using native operations within MongoDB, and is

the preferred method for data aggregation in MongoDB.

The aggregation pipeline can use indexes to improve its performance during some of its stages. In

addition, the aggregation pipeline has an internal optimization phase. Some are the pipeline

stages which may take advantage of indexes are as under:

$match : The $match stage can use an index to filter documents if it occurs at the beginning of a
pipeline.

$sort : The $sort stage can use an index as long as it is not preceded by a $project, $unwind or
$group stage.

$group : The $group stage may sometimes be used as an index to find the first document in each
group if all of the following criteria are met:

https://docs.mongodb.com/manual/reference/operator/aggregation/group/#pipe._S_group

 4

 The $group stage is preceded by a $sort stage that sorts the field to group by,

 There is an index on the grouped field which matches the sort order and

 The only accumulator used in the $group stage is $first.

Example: lets take a collection marks, having marks of various subjects for each students in
various class given as under:

{ "_id" : ObjectId("5ec103443b6e4f8f5b4f1148"), "name" : "rohit", "class" : "9th", "rollno" : 3, "sub" :
"computer", "marks" : 48 }
{ "_id" : ObjectId("5ec103583b6e4f8f5b4f1149"), "name" : "rohit", "class" : "9th", "rollno" : 3, "sub" :
"english", "marks" : 44 }
{ "_id" : ObjectId("5ec1036c3b6e4f8f5b4f114a"), "name" : "rohit", "class" : "9th", "rollno" : 3, "sub" :
"hindi", "marks" : 41 }
{ "_id" : ObjectId("5ec103913b6e4f8f5b4f114b"), "name" : "suman", "class" : "9th", "rollno" : 2,
"sub" : "computer", "marks" : 41 }
{ "_id" : ObjectId("5ec103a33b6e4f8f5b4f114c"), "name" : "suman", "class" : "9th", "rollno" : 2,
"sub" : "english", "marks" : 43 }
{ "_id" : ObjectId("5ec103b53b6e4f8f5b4f114d"), "name" : "suman", "class" : "9th", "rollno" : 2,
"sub" : "hindi", "marks" : 43 }
{ "_id" : ObjectId("5ec103cf3b6e4f8f5b4f114e"), "name" : "ajay", "class" : "10th", "rollno" : 8, "sub" :
"hindi", "marks" : 45 }
{ "_id" : ObjectId("5ec103e73b6e4f8f5b4f114f"), "name" : "ajay", "class" : "10th", "rollno" : 8, "sub" :
"english", "marks" : 39 }
{ "_id" : ObjectId("5ec103f83b6e4f8f5b4f1150"), "name" : "ajay", "class" : "10th", "rollno" : 8, "sub" :
"computer", "marks" : 44 }
{ "_id" : ObjectId("5ec1041b3b6e4f8f5b4f1151"), "name" : "manoj", "class" : "10th", "rollno" : 9,
"sub" : "hindi", "marks" : 44 }
{ "_id" : ObjectId("5ec104283b6e4f8f5b4f1152"), "name" : "manoj", "class" : "10th", "rollno" : 9,
"sub" : "computer", "marks" : 49 }
{ "_id" : ObjectId("5ec104373b6e4f8f5b4f1153"), "name" : "manoj", "class" : "10th", "rollno" : 9,
"sub" : "english", "marks" : 40 }

1. Now, lets execute the following aggregate command:

db.marks.aggregate([{$match:{"class":"10th"}},{$group:{_id:"$name","Total_Marks":{$sum:
"$marks"}}}])

 5

This command executed in two states,

first Stage: The $match stage filters the documents by the status field and passes to the next
stage those documents that have class equal to "10th".

Second Stage: The $group stage groups the documents by the sub field to calculate the sum of
the amount for marks.

This resulted into:

{ "_id" : "manoj", "Total_Marks" : 133 }

{ "_id" : "ajay", "Total_Marks" : 128 }

2. Now Run another, aggregate command and see the output

db.marks.aggregate([{$match:{"class":"9th"}},{$group:{_id:"$sub",Max_marks:{$max:"$mar
ks"}}}])

Here, in state 1, students of class 10th are filtered out and then Maximum marks of each subject
has been computed (filtered). The output is:

{ "_id" : "english", "Max_marks" : 44 }

{ "_id" : "computer", "Max_marks" : 48 }

{ "_id" : "hindi", "Max_marks" : 43 }

Assignment

1. What is aggregation framework? List some aggregation stage operators with their usage.

2. What is aggregation pipeline?

