
Programming and Problem Solving through Python Language
O Level / A Level

Chapter - 6 : Functions

String Pattern Matching

Regular Expression

 It is a special text string used for a search pattern. It is useful for extracting information
from text like code, files, log, spreadsheets or even documents.

 Python has a built-in package called re Module, which helps to work with Regular
Expressions.

 It is required to import the re Module before using it. e.g. import re

Regular Expression functions

 match() checks for a match only at the beginning of the string.
 search() checks for a match anywhere in the string.
 findall() checks for all the match in the string and returns the list.
 split() gives a list where the string has been split at each match.
 sub() replaces one or many matches with a string.

Metacharacters

Metacharacters are characters with specific meaning.

Character Description Example

[] A set of characters "[a-m]"

\ Signals a special sequence (can also be used to escape
special characters)

"\d"

. Any character (except newline character) "he..o"

^ Starts with "^hello"

$ Ends with "world$"

* Zero or more occurrences "aix*"

+ One or more occurrences "aix+"

{ } Exactly the specified number of occurrences "al{2}"

| Either or "falls|stays"

() Capture and group

Example

import re

#Check if the string starts with "The" and ends with "Spain":

txt = "The dog chase the cat"
x = re.search("^The.*cat$", txt)

if (x):
 print("String found!")
else:
 print("String not found")

Special Sequences

A special sequence is a \ followed by one of the characters.

Character Description Example

\A Check if the specified characters are at the beginning of the
string

"\AThe"

\b Check the specified characters are at the beginning or at the
end of a word
(the "r" in the beginning is making sure that the string is
being treated as a "raw string")

r"\bain"
r"ain\b"

\B Check the specified characters are present, but NOT at the
beginning (or at the end) of a word
(the "r" in the beginning is making sure that the string is
being treated as a "raw string")

r"\Bain"
r"ain\B"

\d Checks the string contains digits (numbers from 0-9) "\d"

\D Checks the string DOES NOT contain digits "\D"

\s Checks the string contains a white space character "\s"

\S Checks the string DOES NOT contain a white space
character

"\S"

\w Checks the string contains any word characters (characters
from a to z, digits from 0-9, and the underscore _ character)

"\w"

\W Checks the string DOES NOT contain any word characters "\W"

\Z Checks the specified characters are at the end of the string "Spain\Z"

Example

import re

txt = "The rain in Train"
x = re.search("ai", txt)
print(x) #this will print an object

Output

<re.Match object; span=(5, 7), match='ai'>

Example
import re

#searches all the words starting with r
txt = "rain in train"
x = re.findall("r\w+", txt)
print(x)

#searches the occurrence of words starting with r, in the beginning of string.
txt = "rain in train"
x = re.match("r\w+", txt)
print(x.group())

#searches the occurrence of words starting with r, in the beginning of string.
txt = "pain in train"
x = re.match("r\w+", txt)
print(x)

#searches the occurrence of words starting with r, anywhere of string.
txt = "pain in train"
x = re.search("r\w+", txt)
print(x)

#split the string, wherever the occurrence of word found.
txt = "The rain in Spain"
x = re.split("ai", txt)
print(x)

Output
['rain', 'rain']

<re.Match object; span=(0, 4), match='rain'>

None

<re.Match object; span=(9, 13), match='rain'>

['The r', 'n in Sp', 'n']

Example

import re
#splits the string wherever the whitespace found

txt = "The rain in train"
x = re.split("\s", txt, 1)
print(x)

x = re.split("\s", txt, 2)
print(x)

x = re.split("\s", txt)
print(x)

Output
['The', 'rain in train']
['The', 'rain', 'in train']
['The', 'rain', 'in', 'train']

