

(Under Ministry of Electronics and Information Technology, Govt. of India) http://www.nielit.gov.in/

NIELIT Virtual Academy

Al13 Certificate course in Deep Learning with Python

Course Objectives

Upon completing this course, participants should be able to

- Understand the fundamentals of Artificial Neural Networks (ANNs) and apply them through practical case studies.
- Demonstrate proficiency in applying linear algebra, calculus, and optimization techniques to enhance deep learning understanding.
- Master the application of Convolutional Neural Networks (CNNs) through an understanding of convolutional layers, pooling, and case studies.
- Apply Recurrent Neural Networks (RNNs) and Long Short-Term Memory Networks (LSTMs) to handle sequential data in non-NLP tasks.
- Explore and apply advanced deep learning concepts such as generative models, Generative Adversarial Networks (GANs), and advanced LSTM techniques.
- Apply knowledge acquired throughout the course to a real-world capstone project, showcasing comprehensive understanding and practical skills.

Eligibility

Any Bachelor's Degree -Undergoing/Completed.

Prerequisites

 Basic Understanding of Machine Learning ,Mathematics Foundation & Programming Proficiency

Methodology:

- **✓** Live Lecture
- **✓** Content Access through e-learning portal
- ✓ Covers both Theory & Practical
- **✓** Assessment and Certification

Registration Link: http://nva.nielit.gov.in

Contact Number: 7598730125

National Institute of Electronics & Information Technology

(Under Ministry of Electronics and Information Technology, Govt. of India) $\underline{ \text{http://www.nielit.gov.in/} }$

Al13 Certificate course in Deep Learning with Python		
Module 1: Foundations of Deep Learning		
Day 1	Introduction to Artificial Neural Networks	Day 1-5
Day 2	Perceptron's and Multilayer Perceptrons	
Day 3	Activation Functions and Their Roles, Loss Functions	
Day 4	Case study	
Day 5	Graded Assignment-1	
Module 2: Mathematics for Deep Learning		
Day 6	Linear Algebra for Deep Learning	Day 6-10
Day 7	Essential Calculus: Derivatives and Gradients	
Day 8	Optimization Techniques	
Day 9	Mathematics in Neural Networks	
Day 10	Graded Assignment-2	
Module 3: Convolutional Neural Networks		
Day 11	Convolutional Layers and Filters	Day 11-15
Day 12	Pooling Layers (Max Pooling, Average Pooling)	
Day 13	Strikes & Padding	
Day 14	Case study	
Day 15	Graded Assignment-3	
Module 4: Recurrent Neural Networks and Sequences		
Day 16	Introduction to Sequential Data and RNNs	Day 16-20
Day 17	Long Short-Term Memory Networks (LSTMs)	
Day 18	Handling Sequential Data for Non-NLP Tasks	
Day 19	Case study	
Day 20	Graded Assignment-4	
Module 5: Advanced Topics and Applications		
Day 21	Generative Models: Introduction and Applications	Day 21-25
Day 22	Generative Adversarial Networks (GANs)	
Day 23	Advanced Techniques in LSTMs (Bidirectional LSTMs)	
Day 24	Case study	
Day 25	Graded Assignment-5	
Module 6- Capstone project		
Day 26- 30	Project	Day 26-30
Day 31	Project Viva & MCQ test	
ı	I	l