

10/10/2022

Syllabus for Internship on Digital Signal Processing & its Application

Contact Info:

Section 8904310403

🗳 pavan@calicut.nielit.in

Syllabus and timeline:

Inte	rnship on Digital Signal Processing and its application	.1
(Ult	rasound Imaging)	.1
1.	Basics of MATLAB and Digital Signal Processing	.1
2.	Basics of US Imaging	.2
3.	Basics of hands-on GUI development using QT	.2
4.	Basics of hands-on GUI development using QT-QML	.3
5.	HMI Development for B-mode and M-mode US Imaging using QT-QML with Intel IPPs	.3

Internship on Digital Signal Processing and its application (Ultrasound Imaging)

1. Basics of MATLAB and Digital Signal Processing

Day-01 &02 :Theory: 1 hrPracticals: 5hrsIntroduction to MATLAB, Basics of MATLAB, basic operations, scripts, live scripts, functions,
polynomials, saving workspace variables, loading the data, Input/Output, Structures, cells,
Practicals:Practicals:

- 1. Built-in functions, linearly spaced vector generation
- 2. Scripts vs functions vs live scripts
- 3. Generation of random signals, sine, traingular waves.
- 4. Some function examples
- 5. Saving the variables and loading the data

Day-03 &04: Theory: 1 hr Practice: 5 hrs.

MATLAB and Signal Processing: plotting graphs, Sub-plots, fourier transforms. Filters, Digital filters, windowing techniques, mean, standard deviation of data.

Practicals:

- 1. 2-D Plots and subplots
- 2. different types of plotting options
- 3. fourier transforms
- 4. Frequency response of Butterworth filter
- 5. Comparison of hw(n) of Hanning, Hamming and Blackman windows
- 6. mean, standard deviation of given data.

Day-05: Practice:3 hrs

File Handling in MATLAB: reading and writing text files, Saving matlab data in to text file, creating basic user dialog boxes.

Practicals:

- 1. Reading and writing text data
- 2. Saving the variable data in to the text file.
- 3. Creation of simple user dialog box

2. Basics of US Imaging

Day-01 &02 : Theory: 1 hr Practicals: 5hrs

Basics of Sound, Introduction to Ultrasound and Ultrasound Machines.

Frequency, speed, Band width, Time of Flight, Transducer, Radiation, Reflection, refraction,

Attenuation, Absorption and scattering. Pulse echo principle.

Practicals:

- 1. Generation of Multi frequency signal and plotting the signal
- 2. Adding noise to problem-1 and plotting the signal
- 3. Ultrasound ranging (pulse echo)

Day-03 &04: Theory: 1 hr Practice: 5 hrs.

Types of Transducers, Ultrasound Beams and focusing, Modes of Ultrasound display, Technical description of ultrasound images (A-mode, B-mode, M-mode) Field-II introduction, Basics about Ultrasound imaging, Implementation of different probe

arrays, Generation of A-mode display.

Practicals:

- 1. Adding the FIELD-II to MATLAB
- 2. Creation of 64 element linear array transducer
- 3. Creration of 2-Dimensional phased array transducer
- 4. Generation of A-mode display

Day-05: Practice:3 hrs

US B-Mode imaging principles. Frontend and backend processing. Principles of Beamforming, delay and sum beamforming, US receiver processing-envelope detection, dynamic range compression, scan conversion and display.

Linear array, phased array and convex array imaging.

Practicals:

1. Generation of Phased array B-mode imaging display

3. Basics of hands-on GUI development using QT

Day-01 &02 : Theory: 1 hr Practicals: 5hrs

Introduction to Qt and C++, Basics of C++ : Input and Output, Flow controls(if-else, ternary, for-loop), Function overloading, Constructors , destructors, Inheritance.

Introduction to Qt Creator, Project creation: Qt Console Application, Qt Widgets Application , Using Qt Documention

Practicals: Practice of some examples on above topics

Day-03 &04: Theory: 1 hr Practice: 5 hrs.

Basic Qt class: Qdebug, Timers, Event handling : Signal and slots connections, Qt classes: Qobject, Qstring, Qdate, Qtime, QbyteArray, Qlist, Qvector, QsysInfo, Qfile, QtextStream, QUdp Socket **Practicals:** Practice of some examples on above topics

Day-05: Practice:3 hrs

QserialPort, Qt widgets. **Practicals:** Practice of some examples on above topics

4. Basics of hands-on GUI development using QT-QML.

Day-01 &02 :Theory: 1 hrPracticals: 5hrsIntroduction to QML, Qt creator, QML basics, Qt QuickPracticals: Practice of some examples on above topics

Day-03 &04: Theory: 1 hr Practice: 5 hrs.

Design properties, Integration of QT C++ and QML, Image creation **Practicals:** Practice of some examples on above topics

Day-05: Practice:3 hrs

Qpaint, Building a small project **Practicals:** Practice of some examples on above topics

5. HMI Development for B-mode and M-mode US Imaging using QT-QML with Intel IPPs

Day-01 &02 : Theory: 1 hr Practicals: 5hrs

Artificial phantom generation: Creating objects similar to real-world, Generating the Ultrasound reflected(echo) beamforming signal from the artificial phantom(created object) **Practicals:**

- 1. Creation of artificial phantom with FIELD-II tool using MATLAB
- 2. Saving the beamformed data in to the text files

Day-03 &04: Theory: 1 hr Practice: 5 hrs.

GUI design and integration of echo signal generated in MATLAB to GUI Project: Ultrasound (US) GUI design – Part1 **Practicals:**

1. Creating the GUI using qt-qml for US B-mode display

Day-05: Practice:3 hrs

Project: Ultrasound (US) GUI design – Part2 Practicals:

- 1. Integration of beamformed data to GUI
- 2. Generate B-mode display and M-mode display.